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Abstract—Infrastructure-assisted cooperative perception en-
ables vehicles to achieve beyond-line-of-sight awareness through
roadside units (RSUs). However, its application in multi-vehicle
collaboration is severely hindered by non-uniform communica-
tion delays and the lack of spatial consistency in real-world
scenarios. To address these challenges, we propose SyncMap,
a lightweight framework that integrates high-definition map-
aligned dynamic bird’s-eye view (BEV) representation with
predictive state bridging (PSB) to achieve spatiotemporal align-
ment of multi-source perception data under latency. SyncMap
constructs a map-referenced, structured BEV representation
based on roadside multi-object detection and compensates for
heterogeneous communication delays across targets via histori-
cal trajectory prediction, thereby generating temporally aligned
global environmental snapshots. These snapshots are dynamically
generated with respect to the ego vehicle, providing a unified
perception input for all connected vehicles within the region.
We evaluate SyncMap in CARLA, demonstrating its superior
performance in perception consistency. Furthermore, we inte-
grate SyncMap into a multi-vehicle VLM-RL decision-making
system. Experimental results show that temporally aligned inputs
significantly improve task success rates in cooperative driving,
validating the critical role of spatiotemporal consistency in multi-
vehicle semantic coordination. This work presents an efficient and
scalable shared perception solution for real-world deployment of
vehicle-infrastructure cooperative systems.

I. Introduction
In recent years, autonomous vehicles (AVs) have shown

great promise in improving traffic safety and efficiency [1],
[2]. [3]However, in complex urban environments—such as
dense intersections or mixed-traffic scenarios—occlusions and
limited field-of-view hinder reliable perception, especially for
vulnerable road users in blind spots. This often leads to
conservative behaviors or safety risks when relying solely on
ego-vehicle sensing.

Vehicle-to-everything (V2X) cooperation, particularly
through roadside units (RSUs) equipped with multimodal
sensors, offers a promising solution by providing a “God’s-eye
view” of the environment [4], [5]. Such infrastructure-assisted
perception enables beyond-line-of-sight awareness and
supports a shared environmental understanding among
connected vehicles, enhancing both safety and coordination
efficiency.
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Despite its potential, practical deployment faces a critical
challenge: time delays in perception-communication pipelines.
[6], [7] RSU-generated detections often experience non-
uniform delays [8] (spanning hundreds of ms to seconds [9])
due to processing and transmission latency, causing spatiotem-
poral misalignment [10], [11]. This leads to inconsistent state
perceptions between vehicles—termed multi-vehicle cognitive
clock asynchrony [12]—that break cooperation safety require-
ments [13], [14].

This issue critically affects semantic decision frameworks
like VLM-RL [15], [16], which require coherent structured
inputs [17] to align language instructions (e.g., “safely cross
while yielding”) with perception. Temporal misalignment dis-
rupts this alignment, risking unsafe actions.

To address this, we propose SyncMap, a lightweight, delay-
aware RSU-based framework for multi-vehicle cooperative
perception (Fig. 1). It delivers on-demand, temporally aligned
environmental snapshots to connected vehicles via predictive
state bridging (PSB), aligning delayed observations to ensure
spatiotemporal consistency. Key contributions include:

• A cooperative alignment framework based on high-
definition maps supports vehicle-centric BEV generation
and cross-vehicle spatial consistency.

• Design a Predictive State Bridging (PSB) mechanism
to compensate for non-uniform V2X delays through
lightweight state prediction.

• Experimental validation in Carla shows that the proposed
method significantly enhances driving safety in the VLM
system.

Fig. 1: System overview diagram.



II. Methodology
This paper proposes SyncMap, a lightweight framework for

spatiotemporally consistent BEVs via HD map fusion [18],
combining HD-map alignment and PSB for semantic decision
pipelines [19].

A. HD-Map-Aligned Dynamic BEV Modeling
In vehicle-infrastructure systems, SyncMap ensures spatial

consistency for shared perception by fusing RSU perception,
HD maps, and vehicle pose to create a vehicle-centric BEV.

Let the vehicle’s global pose in W be TW
𝑣 = (lat0, lon0, 𝜓0),

where (lat0, lon0) denotes heading. RSU detections of traffic
participants are given as z𝑖 = (lat𝑖 , lon𝑖 , 𝑣𝑖 , 𝜓𝑖) inW. A globally
referenced HD map MW (OpenDRIVE) [20], [21] provides
road topology, lane boundaries, and static semantics.

To generate a vehicle-centric BEV, dynamic states are
transformed from W to body-fixed frame B via a two-step
process: projecting to local Cartesian frame C via tangent
plane approximation [22], [23], then aligning with the vehicle’s
orientation [24].

Let 𝑅 denote Earth’s mean radius. The local coordinates of
target 𝑖 are computed as:
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Let Δlon𝑖 = lon𝑖 − lon0, Δlat𝑖 = lat𝑖 − lat0 to minimize high-

latitude longitude distortion and preserve geometric accuracy
[25].
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the SE(2) transformation:
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The full transformation into B is then:
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Transformed dynamic states are discretized as a BEV tensor
B ∈ R𝐻×𝑊×𝐶 with occupancy, velocity, heading, and category.
Static map elements (e.g., lane markings) from MW are
projected into B via the same transformation [26], forming a
unified dynamic-static representation [19], [27].

This sensor-agnostic BEV uses RSU perception and HD maps
to provide a standardized model for cooperative driving.

B. Predictive State Bridging
HD-map-aligned BEVs ensure spatial consistency, but non-

uniform V2X delays (500–1000 ms) cause outdated roadside
perception, leading to misalignment and fragmented trajectories
that degrade planning and performance [28]. This discrepancy
is illustrated in Fig. 2, which compares the delayed semantic
bird’s-eye view (BEV) with the original BEV.

Fig. 2: Comparison between the delayed semantic BEV and the
original BEV image.

We introduce PSB, a lightweight method that aligns delayed
perception with current decisions via forward prediction, using
motion history to generate temporally aligned snapshots .

PSB avoids complex black-box predictors [11] by leveraging
vehicle motion continuity and physical predictability for short-
term delays (Δ𝑡 < 2 s) [29].

PSB uses a Kalman Filter (KF) with a Constant Velocity
(CV) model, providing optimal low-cost state estimation ideal
[16], [30] for edge deployment on RSUs under linear-Gaussian
assumptions.

Let the state of target 𝑂𝑖 at detection time 𝑡det be:

x𝑖 = [𝑝𝑥 , 𝑝𝑦 , 𝑣𝑥 , 𝑣𝑦 , 𝜃]𝑇 (1)

where (𝑝𝑥 , 𝑝𝑦) is position, (𝑣𝑥 , 𝑣𝑦) velocity, and 𝜃 heading.
This state is received at 𝑡now, with delay Δ𝑡 = 𝑡now − 𝑡det.

PSB propagates the state forward using the CV model:

x𝑖 (𝑡now) = Fx𝑖 (𝑡det) + w, w ∼ N(0,Q) (2)

and Q models process noise (e.g., acceleration disturbances).
In practice, PSB performs only the prediction step:

x̂−
𝑖 (𝑡now) = Fx𝑖 (𝑡det) (3)

Without new measurements, the delayed state is extrapolated
to 𝑡now, aligning past observations to the present.

The PSB-corrected state x̂𝑖 (𝑡now) is integrated into
SyncMap’s dynamic BEV, reflecting current estimates and
ensuring spatiotemporal coherence [30], [31].

III. Experimental Evaluation
To assess perception latency’s impact on language-guided

driving policies and validate the PSB compensation mechanism,
we developed a CARLA-based cooperative framework and con-
ducted ablation studies under non-uniform latency to evaluate
policy performance.

A. Experimental Setup
Experiments used CARLA’s Town02 with simulated roadside

BEV perception mimicking real RSU outputs. A 500–1000
ms stochastic delay was applied to simulate V2X latency,
causing temporal misalignment. Policies trained without delay
were evaluated under latency using one of three inference-time
strategies:



TABLE I: Performance comparison of CV, Misuse, and PSB-Compensated policies during the inference phase under
non-uniform perception delays of 500-1000 ms (mean ± standard deviation, after 1M-step training).

Policy Steps RC ↑ TD ↑ CS ↓ CPS ↓ SR ↑

CV Policy 0.71±0.06 1510.4±177.5 1.73±1.18 0.002562±0.000714 0.43±0.06
Misuse Policy 100000 0.71±0.06 1510.4±177.52 1.73±1.18 0.002562±0.000714 0.43±0.06
PSB-Compensated Policy 0.85 ± 0.05 1811.4 ± 127.23 1.77±2.53 0.001241 ± 0.000755 0.7 ± 0.1

CV Policy 0.75±0.02 1563.3±76.15 1.88 ± 0.82 0.001961±0.000295 0.57±0.06
Misuse Policy 200000 0.72±0.04 1487.2±140.89 3.10±1.45 0.002637±0.00048 0.5±0.1
PSB-Compensated Policy 0.80 ± 0.09 1696.2 ± 234.2 2.68±0.31 0.001729 ± 0.000318 0.6 ± 0.0

CV Policy 0.76±0.09 1607.8±250.84 1.31±1.33 0.001826±0.000764 0.53±0.06
Misuse Policy 300000 0.74±0.06 1588.9±85.78 2.20±0.42 0.001875±0.000695 0.47±0.06
PSB-Compensated Policy 0.88 ± 0.03 1911.7 ± 79.53 0.84 ± 0.79 0.00118 ± 0.000447 0.8 ± 0.0

CV Policy 0.76±0.09 1861.3±219.46 1.61±1.54 0.000945±0.000753 0.73±0.12
Misuse Policy 400000 0.80±0.06 1708.1±139.45 2.46±2.17 0.001528±0.000595 0.67±0.06
PSB-Compensated Policy 0.93 ± 0.04 1957.4 ± 120.19 0.13 ± 0.18 0.000662 ± 0.000525 0.8 ± 0.1

CV Policy 0.93 ± 0.06 1973.0 ± 129.49 0.42±0.36 0.000896±0.000693 0.77±0.12
Misuse Policy 500000 0.81±0.01 1751.3±49.71 3.61±1.27 0.001612±0.0002 0.57±0.06
PSB-Compensated Policy 0.91±0.07 1967.2±132.69 0.30 ± 0.33 0.000702 ± 0.000544 0.87 ± 0.12

• Misuse Policy: Directly uses delayed BEV inputs without
compensation.

• CV Policy: Applies a Constant Velocity model to extrapo-
late target states linearly.

• PSB-Compensated Policy: Uses a Predictive State Bridging
module for motion-aware forward prediction.

Fig. 3: Comparison of periodic task performance across different
strategies during the inference process.

PSB showed greater adaptability across traffic densities,
maintaining higher success and robustness in dense traffic,
while Misuse and CV policies faltered. This validates PSB’s
effectiveness under latency (Fig. 4).

Models were trained for 1 × 106 steps using VLM-RL-SAC
[13], evaluated every 1 × 105 steps. Performance was assessed
via efficiency (RC, TD, SR) and safety (TCF, CS, ICT) metrics
over three trials on 10 routes for statistical reliability.

Fig. 4: Comparison of success rates among the three policies
under varying traffic densities.

B. Simulation Results and Analysis
All policies converged by 500k steps. The Misuse Policy

showed high instability, with SR dropping to 0.57 and poor
safety. The CV Policy improved SR to 0.77 but exhibited
oscillations, highlighting limitations of linear prediction.

The PSB-Compensated Policy achieved superior, stable per-
formance: SR reached 0.87, RC 0.91, and collision probability
dropped significantly(Fig. 3), demonstrating consistent effec-
tiveness against non-uniform delays.

IV. Conclusion
This paper addresses spatiotemporal misalignment from

non-uniform communication delays in vehicle-infrastructure
cooperation, proposing SyncMap—a lightweight framework
combining HD-map-aligned dynamic BEVs with Predictive
State Bridging (PSB) for consistent environmental modeling.
By generating temporally aligned global snapshots, SyncMap
bridges delayed perception to semantic decision-making. Vali-
dated with VLM-RL policies, it improves task success rates and
enables deployable, language-guided multi-vehicle cooperation.
Future work integrates VLM-RL with real-world deployment
and SyncMap’s roadside services to evaluate practical perfor-
mance and robustness.
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